

Abstract—The video game market is one of the largest in the

world, and it is growing. Trailing this growth in the video game

industry has been E-Sports. E-Sports have struggled to be

recognized as a legitimate form of competition, but the amount

of money swimming around professional video-gaming has

started to turn E-Sports mainstream. The rise in E-sport’s

legitimacy has manufactured a need for a system to prevent

cheating in online communities. This paper proposes a workflow

for an automatically adaptive and generalizable video-game

anti-cheat that trains Convolutional Neural Networks (CNNs) to

remove cheating players from game servers. The system

described in this paper can use human moderation to quickly

train a CNN to recognize new forms of cheating as they arise.

DeepCheat was trained on a custom dataset of 168 images that

contained only two values, player position and the location of an

attack. After training, DeepCheat achieved an accuracy rate of

82% and demonstrated the ability to learn over time. These

results suggest that DeepCheat is a viable, data-efficient,

generalizable, adaptable, and cost-effective solution to curb

cheating in online games.

I. INTRODUCTION

E-sports have become a legitimate form of competition
over the past decade. Although they do not garner the same
viewership numbers as traditional sporting events, the video-
gaming market totals over $94 billion in the US alone.[1]
Furthermore, E-sports are important to foreign relations as
they become leading culture exports from countries like Japan
and South Korea.[2] E-sports may not yet be viewed as real
“sports” by the mainstream, but the industry is large and
growing. As stakes and prize-pools rise, people have begun to
develop increasingly complex ways of cheating in digital
competition. This has necessitated the development of
evermore accurate, powerful, and intrusive systems for
ensuring fair competition between those who complete online.
Traditional anti-cheat systems often increase in cost and
development time as they become progressively more
complex. DeepCheat is not a stand-in for these traditional
systems but can help mitigate the harm caused by cheaters in
the time between the creation of a new form of cheating and
the publication of a patch to remove the cheaters.

Normally, a game’s anti-cheat must be updated manually
as a reaction to the creation and dissemination of a new form
of cheating. This system requires a team of people who can be
summoned at any point to patch out a cheating method before
it ruins a game’s competitive queues (many games maintain an
online ranking of top-players decided by their performance in
so-called “competitive queues”). Moreover, game companies
are required to hire and maintain a plethora of moderators who

can manually punish players who cheat and are not detected
by the game’s auto-moderation system. This process is
expensive and slow, requires hiring numerous people and
modifying a game’s source code when the need arises.
Additionally, once a patch is made the development team must
decide to thoroughly test the new changes (increasing turn-
around time and allowing more players to cheat) or hastily
release the new patch, possibly breaking the game for many
people who are not cheating, an expensive mistake.

 As a potential solution, this paper proposes that the
moderators can be incorporated in a training loop for a
Convolutional Neural Network (CNN), which processes
generated images of player performance. The CNN can then
learn adaptively as moderators identify new forms of cheating.
This approach provides numerous advantages over requiring
the moderating team to describe a new exploit to a
development team and then waiting for the development team
to finish a patch. The main advantages are adaptability and cost
as it is no longer required for game companies to hold many
software engineers on call.

Figure 1. A diagram of the proposed DeepCheat workflow.

II. METHODS

168 images (referred to as a “player report”) were
compiled to form a custom dataset of player reports created
from the gameplay of cheating and valid players. These images
were assigned the labels “dirty” and “clean” respectively. Four
different players helped to create this dataset. Two of the
players were given cheating tools and the other two were not.
They were paired so in each scenario a cheater was fighting a
normal player, and data was collected on their fights. Cheating
players were given the ability to run faster, hit farther, and
automatically aim their cursor. The player data was collected

DeepCheat: A Convolutional, Adaptive, and Generalizable Video

Game Anti-Cheat

Jón B. Salenger1

1McDonogh School, 8600 McDonogh Rd, Owings Mills, MD 21117

using a custom written plug-in for the game Minecraft, which
used packets sent to a game server to analyze the actions of a
player and compose a corresponding image. This approach
requires no code to be downloaded or executed on the client
side.

Player reports were constructed by polling player positions
from the server side every 100ms and then plotting a line
between the last known position and the current one. To feed
the model extra information, a red dot was drawn in the
location of every attack by the player. This continues for 30
seconds until a 98x98 image is drawn detailing changes in a
player’s position and the location of every attack that player
made. The amount of data within the image was intentionally
kept small, in order to demonstrate that this approach is
generalizable and data efficient.

 The choice of Minecraft as the test game does not reduce
DeepCheat’s generalizability as all major game engines use a
cartesian coordinate system, Minecraft’s game design just
emphasizes this feature. Minecraft was also chosen for its
third-party API, which allows players to interface directly with
the game server, a necessity for creating this dataset. Minecraft
is a game assembled by blocks of 1 cubic unit of volume
making it easy to map player location on a 2D plane to an
image. If the players are competing in a flat virtual “arena” of
X by Y then the resultant image can be of size X by Y. In this
case, the arena used to train the model from player data was 98
blocks by 98 blocks, so the resultant image was 98 pixels by
98 pixels. This means that image size, format, and resolution
are all task-dependent even within the same game.

Figure 2. Examples of generated player reports, left and right are
“clean” while the center image is “dirty.”

Transfer learning techniques and the FastAI library were
used to train a CNN based on a 34-layer residual network with
pretrained weights. The standard 34-layer residual network
(resnet-34) proved to be an extremely accurate and
generalizable architecture for classifying images of all types.[3]
All layers of the model were trained for 5 epochs, and only the
last layer was trained for an additional 2 epochs. This helped
the model learn the general format of what a DeepCheat image
would look like on all the layers but prevented overfitting by
keeping the first n-1 layers more general. The model was
trained using a discriminative LR starting at 1e-3 and the
Adam optimizer. We made use of the binary cross-entropy loss
(also referred to as log-loss) function defined as:

 − (ylog(p)+(1−y)log(1−p)) ()

where y was a binary indicator, either 1 or 0, that reflects
the correct label, and p was the predicted probability of the
input being class y. This loss function penalized the model for
being over or under confident by including the predicted
probability in the equation. By optimizing the predicted

probability to be as close to the correct label as possible the
likelihood of costly false positives decreases.

III. RESULTS AND DISCUSSION

After training, the model achieved a training loss of
approximately .17 and a validation loss of approximately .47.
The model’s final accuracy was 82% (rounded to the nearest
whole number). However, in practice this would mean that
82% of the time the model would successfully identify a
cheater within 30 seconds. As each successive player report is
generated, the model will have a new chance to predict
whether the player is cheating or not. DeepCheat’s
effectiveness in practice, therefore, would be much higher as
the game continues.

The ability of DeepCheat to learn and improve based on
the created dataset is shown by the decrease in the model’s
training and validation loss over time. The decrease in
validation loss in conjunction with training loss implies that
this task was learnable, and results were not the symptom of
model memorization, a common critique of deep learning
algorithms Ultimately, these results further suggest that the
fundamental idea behind DeepCheat is viable. CNNs are able
to learn on images composed of abstract renderings of player
data.

IV. CONCLUSION

The goal of this project is to demonstrate that the
DeepCheat workflow is both generalizable and accurate. The
efficacy of DeepCheat as a Minecraft specific anti-cheat
system could be improved by increasing the resolution of the
image (by further subdividing each block into 4, 9, or n2
others), displaying a wider variety of data to the model (e.g.,
player head position or player hit reach), or by decreasing the
time between player position checks. However, as more data
is made available to the model the less generalizable it
becomes. For example, in some top-down style games, such as
League of Legends, player head position is not a piece of data
that would aid the model in classifying cheaters. Through the
use of task-agnostic data and computationally efficient
methods of data generation this paper demonstrates that the
DeepCheat workflow is both generalizable and accurate.

ACKNOWLEDGMENT

I would like to acknowledge the research done by Gleb

Esman at Splunk, a cybersecurity company, which gave me

the idea to build DeepCheat.

REFERENCES

[1] Clement, J. (2022, May 24). Video games industry in the U.S. 2022.
Statista. Retrieved October 7, 2022, from

https://www.statista.com/statistics/246892/value-of-the-video-game-

market-in-the-us/
[2] Rea, S. C. (2020, May 25). Crafting stars: South Korean e-sports and

the emergence of a digital gaming culture. Association for Asian

Studies. Retrieved October 7, 2022, from
https://www.asianstudies.org/publications/eaa/archives/crafting-stars-

south-korean-e-sports-and-the-emergence-of-a-digital-gaming-culture/

[3] Zagoruyko, S., & Komodakis, N. (2016). Wide residual
networks. Procedings of the British Machine Vision Conference 2016,

1–1. https://doi.org/10.5244/c.30.87

