
  

  

 

Abstract—The video game market is one of the largest in the 

world, and it is growing. Trailing this growth in the video game 

industry has been E-Sports. E-Sports have struggled to be 

recognized as a legitimate form of competition, but the amount 

of money swimming around professional video-gaming has 

started to turn E-Sports mainstream. The rise in E-sport’s 

legitimacy has manufactured a need for a system to prevent 

cheating in online communities. This paper proposes a workflow 

for an automatically adaptive and generalizable video-game 

anti-cheat that trains Convolutional Neural Networks (CNNs) to 

remove cheating players from game servers. The system 

described in this paper can use human moderation to quickly 

train a CNN to recognize new forms of cheating as they arise. 

DeepCheat was trained on a custom dataset of 168 images that 

contained only two values, player position and the location of an 

attack. After training, DeepCheat achieved an accuracy rate of 

82% and demonstrated the ability to learn over time. These 

results suggest that DeepCheat is a viable, data-efficient, 

generalizable, adaptable, and cost-effective solution to curb 

cheating in online games. 
 

I. INTRODUCTION 

E-sports have become a legitimate form of competition 
over the past decade. Although they do not garner the same 
viewership numbers as traditional sporting events, the video-
gaming market totals over $94 billion in the US alone.[1] 
Furthermore, E-sports are important to foreign relations as 
they become leading culture exports from countries like Japan 
and South Korea.[2] E-sports may not yet be viewed as real 
“sports” by the mainstream, but the industry is large and 
growing. As stakes and prize-pools rise, people have begun to 
develop increasingly complex ways of cheating in digital 
competition. This has necessitated the development of 
evermore accurate, powerful, and intrusive systems for 
ensuring fair competition between those who complete online. 
Traditional anti-cheat systems often increase in cost and 
development time as they become progressively more 
complex. DeepCheat is not a stand-in for these traditional 
systems but can help mitigate the harm caused by cheaters in 
the time between the creation of a new form of cheating and 
the publication of a patch to remove the cheaters.  

Normally, a game’s anti-cheat must be updated manually 
as a reaction to the creation and dissemination of a new form 
of cheating. This system requires a team of people who can be 
summoned at any point to patch out a cheating method before 
it ruins a game’s competitive queues (many games maintain an 
online ranking of top-players decided by their performance in 
so-called “competitive queues”). Moreover, game companies 
are required to hire and maintain a plethora of moderators who 

 
 

can manually punish players who cheat and are not detected 
by the game’s auto-moderation system. This process is 
expensive and slow, requires hiring numerous people and 
modifying a game’s source code when the need arises. 
Additionally, once a patch is made the development team must 
decide to thoroughly test the new changes (increasing turn-
around time and allowing more players to cheat) or hastily 
release the new patch, possibly breaking the game for many 
people who are not cheating, an expensive mistake. 

 As a potential solution, this paper proposes that the 
moderators can be incorporated in a training loop for a 
Convolutional Neural Network (CNN), which processes 
generated images of player performance. The CNN can then 
learn adaptively as moderators identify new forms of cheating. 
This approach provides numerous advantages over requiring 
the moderating team to describe a new exploit to a 
development team and then waiting for the development team 
to finish a patch. The main advantages are adaptability and cost 
as it is no longer required for game companies to hold many 
software engineers on call. 

 

Figure 1. A diagram of the proposed DeepCheat workflow. 

 

II. METHODS 

168 images (referred to as a “player report”) were 
compiled to form a custom dataset of player reports created 
from the gameplay of cheating and valid players. These images 
were assigned the labels “dirty” and “clean” respectively. Four 
different players helped to create this dataset. Two of the 
players were given cheating tools and the other two were not. 
They were paired so in each scenario a cheater was fighting a 
normal player, and data was collected on their fights. Cheating 
players were given the ability to run faster, hit farther, and 
automatically aim their cursor. The player data was collected 
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using a custom written plug-in for the game Minecraft, which 
used packets sent to a game server to analyze the actions of a 
player and compose a corresponding image. This approach 
requires no code to be downloaded or executed on the client 
side. 

Player reports were constructed by polling player positions 
from the server side every 100ms and then plotting a line 
between the last known position and the current one. To feed 
the model extra information, a red dot was drawn in the 
location of every attack by the player. This continues for 30 
seconds until a 98x98 image is drawn detailing changes in a 
player’s position and the location of every attack that player 
made. The amount of data within the image was intentionally 
kept small, in order to demonstrate that this approach is 
generalizable and data efficient.   

 The choice of Minecraft as the test game does not reduce 
DeepCheat’s generalizability as all major game engines use a 
cartesian coordinate system, Minecraft’s game design just 
emphasizes this feature. Minecraft was also chosen for its 
third-party API, which allows players to interface directly with 
the game server, a necessity for creating this dataset. Minecraft 
is a game assembled by blocks of 1 cubic unit of volume 
making it easy to map player location on a 2D plane to an 
image. If the players are competing in a flat virtual “arena” of 
X by Y then the resultant image can be of size X by Y. In this 
case, the arena used to train the model from player data was 98 
blocks by 98 blocks, so the resultant image was 98 pixels by 
98 pixels. This means that image size, format, and resolution 
are all task-dependent even within the same game. 

  

        

Figure 2. Examples of generated player reports, left and right are 
“clean” while the center image is “dirty.” 

 

Transfer learning techniques and the FastAI library were 
used to train a CNN based on a 34-layer residual network with 
pretrained weights. The standard 34-layer residual network 
(resnet-34) proved to be an extremely accurate and 
generalizable architecture for classifying images of all types.[3] 
All layers of the model were trained for 5 epochs, and only the 
last layer was trained for an additional 2 epochs. This helped 
the model learn the general format of what a DeepCheat image 
would look like on all the layers but prevented overfitting by 
keeping the first n-1 layers more general. The model was 
trained using a discriminative LR starting at 1e-3 and the 
Adam optimizer. We made use of the binary cross-entropy loss 
(also referred to as log-loss) function defined as:   

 − (ylog(p)+(1−y)log(1−p))  () 

where y was a binary indicator, either 1 or 0, that reflects 
the correct label, and p was the predicted probability of the 
input being class y. This loss function penalized the model for 
being over or under confident by including the predicted 
probability in the equation. By optimizing the predicted 

probability to be as close to the correct label as possible the 
likelihood of costly false positives decreases.  

III. RESULTS AND DISCUSSION 

After training, the model achieved a training loss of 
approximately .17 and a validation loss of  approximately .47. 
The model’s final accuracy was 82% (rounded to the nearest 
whole number). However, in practice this would mean that 
82% of the time the model would successfully identify a 
cheater within 30 seconds. As each successive player report is 
generated, the model will have a new chance to predict 
whether the player is cheating or not. DeepCheat’s 
effectiveness in practice, therefore, would be much higher as 
the game continues.  

The ability of DeepCheat to learn and improve based on 
the created dataset is shown by the decrease in the model’s 
training and validation loss over time. The decrease in 
validation loss in conjunction with training loss implies that 
this task was learnable, and results were not the symptom of 
model memorization, a common critique of deep learning 
algorithms Ultimately, these results further suggest that the 
fundamental idea behind DeepCheat is viable. CNNs are able 
to learn on images composed of abstract renderings of player 
data.  

IV. CONCLUSION 

The goal of this project is to demonstrate that the 
DeepCheat workflow is both generalizable and accurate. The 
efficacy of DeepCheat as a Minecraft specific anti-cheat 
system could be improved by increasing the resolution of the 
image (by further subdividing each block into 4, 9, or n2 
others), displaying a wider variety of data to the model (e.g., 
player head position or player hit reach), or by decreasing the 
time between player position checks. However, as more data 
is made available to the model the less generalizable it 
becomes. For example, in some top-down style games, such as 
League of Legends, player head position is not a piece of data 
that would aid the model in classifying cheaters. Through the 
use of task-agnostic data and computationally efficient 
methods of data generation this paper demonstrates that the 
DeepCheat workflow is both generalizable and accurate.  
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